تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت

تعداد صفحات: 75 فرمت فایل: word کد فایل: 5315
سال: مشخص نشده مقطع: مشخص نشده دسته بندی: مهندسی صنایع
قیمت قدیم:۲۳,۵۰۰ تومان
قیمت: ۱۸,۰۰۰ تومان
دانلود مقاله
  • خلاصه
  • فهرست و منابع
  • خلاصه تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت

    بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت :

    مقدمه :

    ممانعت کننده ها افزودنی هایی هستند که با ایجاد تغییر و تحول بر روی سطح فلزات ، محیط و یا هر دو خوردگی را تحت کنترل در آورده ، شیوه عمل آنها ایجاد تغییرات در واکنش های آندی ، کاتدی و یا هر دو آنها است . ممانعت کننده های بسیار زیادی  با ترکیبات مختلف موجود می باشند ؛ اکثر این مواد با آزمایشات تجربی پیدا شده  و اصلاح یافته اند و بسیاری از آنها با نام های تجاری عرضه می گردند و ترکیب شیمیایی آنها مخفی نگه داشته می شود . به همین دلیل فرآیند حفاظت به این روش به طور کامل مشخص و روشن نیست . ممانعت کننده ها را می توان بر حسب مکانیزم و ترکیب طبقه بندی نمود . با توجه به ترکیب ممانعت کننده ها به دو دسته اصلی معدنی ( Inorganic) و آلی ( Organic) تقسیم می گردند . بر حسب مکانیزم عمل دو نوع مشخص بازدارنده  وجود دارد :

    نوع A : که لایه یا فیلمی محافظ روی سطح فلز تشکیل داده یا نوعی واکنش با فلز انجام می دهند ( مثلا روئین کردن )  [1]

    نوع B : موادی که قدرت خورندگی محیط را کم می کنند.  

    ضمنا بازدارنده های AB هم وجود دارند که هم می توانند با فلز واکنش انجام داده و هم قدرت خورندگی محیط را کم کنند ، ولی همیشه یکی از خاصیت ها حاکم بر دیگری است. بازدارنده های نوع  A بسیار متداول بوده در حالیکه بازدارنده های نوع B کمتر متداول هستند . انواع اصلی بازدارنده ها به ترتیب زیر طبقه بندی می شوند :

    نوع ІA: بازدارنده هایی که سرعت خوردگی را کم می کنند ولی کاملا مانع آن نمی شوند .

    نوع ІІA : بازدارنده هایی که باعث به تاخیر انداختن حمله خوردگی برای مدت زیادی می شوند . به طوری که فلز در مقابل خوردگی مصونیت موقتی پیدا می کند.

    نوع ІІІA : بازدارنده های روئین کننده که لایه های روئین بر سطح فلز تشکیل می دهند . این لایه ها غالبا اکسید یا نمک های غیر محلول فلزی هستند ، مانند فسفات و کرمات برای فولاد . اگر مقدار بازدارنده ای که به محلول اضافه می گردد کم باشد لایه های ناپیوسته تشکیل می گردد که ممکن است خوردگی حفره ای یا حمله تسریع شده موضعی بوجود آید.

    نوع ІB : بازدارنده هایی هستند که واکنش خوردگی را آهسته می کنند . بدون آنکه کاملا مانع آن شوند . این بازدارنده ها غالبا در ضمن عمل حفاظت مصرف می شوند . مانند هیدرازین و سولفیت سدیم .

    نوع ІІB : بازدارنده هایی هستند که در اثر ترکیب با موادی که باعث خوردگی در یک محیط مشخص می شوند  ، خوردگی را به تاخیر می اندازند.

    به طور کلی بازدارنده های نوع ІA ، ІІA ، ІІB ترکیبات آلی هستند و انواع ІІІA و  ІB مواد معدنی .

    موارد عمده کاربرد ممانعت کننده ها مربوط به 4 محیط زیر است :

    1- محلول های آبی از اسید هایی که در فرآیند های تمیز کردن فلزات بکار می روند مثل اسید شویی

    2- آب های طبیعی ، آب های تهیه شده برای سرد کردن در مقیاس صنعتی با PH طبیعی

    3- محصولات اولیه و ثانویه از نفت و پالایش و حمل و نقل آن

    4- خوردگی گازی و اتمسفری در محیط های محدود در حین حمل و نقل و انبار کردن و موارد مشابه

    صنایعی همانند نفت که با H2S و CO2  در ارتباط اند . در مجاورت آب و بخصوص آب شور و دیگر ناخالصی ها مشکلات ناشی از خوردگی را دو چندان می نمایند . ممانعت کننده هایی همانند نفتنیک ، آمین و دی آمین های ( RNH(CH2)n) بکار گرفته می شوند که R یک زنجیر هیدرو کربوری و n = 2-10 است.  [2]

    لازم به ذکر است که ممانعت کننده ها از نظر فلز ، محیط خورنده ، درجه حرارت و غلظت معمولا منحصر به فرد هستند. غلظت و نوع ممانعت کننده ای که در یک محیط خورنده بایستی استفاده شوند  با آزمایش و تجربه تعیین می گردند و اینگونه اطلاعات را معمولا از تولید کننده گان آن مواد می توان دریافت نمود .  در صورتی که غلظت ممانعت کننده کمتر از اندازه کافی باشد ، ممکن است خوردگی تسریع شود ، مخصوصا خوردگی های موضعی مثل حفره دار شدن .

    لذا در صورتی که غلظت ممانعت کننده ها کمتر از اندازه کافی باشد ، خصارت بیشتر از موقعی خواهد بود که ممانعت کننده اصلا بکار برده نشود . برای پرهیز از این خطر بایستی غلظت ممانعت کننده همواره بیش از مقدار مورد نیاز باشد و غلظت آن به طور متناوب تعیین گردد . موقعی که دو یا چند ممانعت کننده به یک سیستم خورنده اضافه گردند ، تاثیر آنها گاهی اوقات بیشتر از تاثیر هر کدام به تنهایی است .

     اگرچه در موارد بسیاری از ممانعت کننده ها به خوبی می توان استفاده نمود ، ولی محدودیت هایی نیز برای این نوع محافظت از خوردگی وجود دارد . ممکن است اضافه کردن ممانعت کننده  به سیستم بخاطر آلوده کردن محیط عملی نباشد . به علاوه بسیاری از ممانعت کننده ها سمی بوده و کاربرد آنها محدود به محیط هایی است که به طور مستقیم یا غیر مستقیم در تهیه مواد غذلیی یا محصولات دیگری که مورد استفاده انسان قرار می گیرد ، نمی باشند.

     

    ممانعت کننده ها و معرفی روش های جدید حفاظت از خوردگی کف مخازن نفت و مایعات گازی :

    توضیحات:خوردگی کف مخازن را می توان با به کارگیری همزمان حفاظت کاتدی و ممانعت کننده خوردگی از نوع فاز بخار و یا تنها با به کارگیری وی سی آی (VCI) تحت کنترل قرار داد.  [3]

    خوردگی کف مخازن نفتی یکی از مشکلات مهم ذخیره سازی نفت خام و مایعات گازی است. نشست مخازن بزرگ نفتی موجب آلودگی آب های زیرزمینی و وارد آمدن خسارت های جبران ناپذیر به محیط زیست می شود. در گذشته کف مخازن (قسمت بیرونی مخزن که با زمین در ارتباط است) با به کارگیری حفاظت کاتدی نتوانسته است به طور کامل مانع از نشت و جلوگیری از خوردگی کف مخازن ذخیره نفت شود.

    در این مقاله دلایل ناتوانی سیستم حفاظت کاتدی در جلوگیری از خوردگی کف مخازن نفتی و آخرین روشهای مورد استفاده برای حفاظت کف مخازن بررسی می شود.

    به کارگیری سیستم حفاظت کاتدی، بازدارنده های خوردگی از نوع فاز بخار و به کارگیری همزمان حفاظت کاتدی و بازدارنده های خوردگی فاز بخار از جمله روش های حفاظت از خوردگی کف مخازن است. [4]

     

    مشکلات روش های حفاظت کاتدی:

    نتایج تجربی نشان می دهد سیستم حفاظت کاتدی به تنهایی قادر به حفاظت خوردگی کف مخازن نیست و در موارد متعدد دچار نشت شده است. این درحالی است که کف مخازن در پتانسیل حفاظت کاتدی قرار دارد.

    یکی از روش های توزیع مناسب پتانسیل حفاظت کاتدی در کف مخازن به کارگیری بستر آندی است. به گونه ای که موجب توزیع پتانسیل حفاظت کاتدی در کف مخازن شود که شامل، به کارگیری آندهای کم عمق در اطراف مخزن، آندهای افقی و سیمی در زیر کف مخزن است.

    در روش اول به علت تخلیه جریان حفاظت کاتدی در لایه سطحی زمین، باعث افزایش ضریب حفاظتی (Over protection) در خطوط لوله مدفون در خاک و مجاور مخازن می شود، بنابراین از این روش نمی توان در پالایشگاه ها استفاده کرد. در روش دوم آندهای سیمی به صورت مارپیچ در فونداسیون کف مخزن قرار می گیرد و این روش برای مخازن موجود قابل استفاده نیست. [5]

    یکی دیگر از روش های توزیع پتانسیل حفاظت کاتدی در کف مخزن عایق سازی الکتریکی هر یک از مخازن از یکدیگر است. در این روش هر یک از مخازن توسط فلنچ عایقی به همراه مقاومت الکتریکی از یکدیگر جدا می شوند.

    به کارگیری پوشش در کف مخزن ها نیز یکی دیگر از روش هایی است که در توزیع حفاظت کاتدی در کف مخزن استفاده می شود. به دلیل مشکلات اجرایی اعمال پوشش بر روی ورق فولادی کف مخازن نفتی و گازی امکان پذیز نمی باشد. حرارت ناشی از جوشکاری صفحات کف مخزن، باعث از بین رفتن پوشش آنها می شود، در نتیجه پوشش مناسبی برای حفاظت از این نواحی نیست.

    بنابراین به جای پوشش دادن ورق فولادی کف مخزن، محل نصب مخزن به خوبی پوشش داده می شود و اطراف مخزن را به خوبی آب بند می کنند. پوشش مزبور چسبندگی به کف مخزن ندارد، در چنین شرایطی این پوشش در حکم سپر برای جریان حفاظت کاتدی عمل می کند و اگر به دلایلی الکترولیک به ناحیه بین پوشش و کف مخزن نفوذ کند، حفاظت کاتدی قادر به مقابله با خوردگی آن نخواهد بود.

    به دلیل آن که پوشش مزبور حالت سپر الکتریکی دارد، اندازه گیری پتانسیل کف مخزن چنین حالتی را نشان نمی دهد و  کف مخزن در محدوده پتانسیل حفاظت کاتدی قرار دارد ولی خوردگی در کف آن اتفاق می افتد.

    از طرف دیگر اگر کف مخزن مستقیما بر روی فونداسیون بتنی قرار گیرد، کلیه نواحی کف مخزن قادر به ایجاد ارتباط الکتریکی مناسب با فونداسیون بتنی نخواهد بود و بنابراین حفاظت کاتدی نمی تواند به خوبی کف مخزن را تحت حفاظت خود قرار دهد.

    نتایج تجربی موجود نشان می دهد مخازن نفتی با وجود حفاظت کاتدی کف آنها دچار خوردگی می شود و نشت مواد نفتی به آبهای زیر زمینی موجب ایجاد خسارت های زیادی به آب های زیر زمینی شده است. [6]

    روش های جدید حفاظت خوردگی کف مخازن

    امروزه می توان خوردگی کف مخازن را با به کارگیری همزمان حفاظت کاتدی و ممانعت کننده خوردگی از نوع فاز بخار و یا تنها با به کارگیری وی سی آی (VCI) تحت کنترل قرار داد.

    مواد وی سی آی، ممانعت کننده فاز بخار، می توانند در محیط بسته سطح فلز را در برابر عوامل خورنده مثل آب، بخار، کلریدها، سولفید هیدروژن و مواد خورنده دیگر در محیط های صنعتی حفاظت کنند.

    فشار بخار مواد مذکور کم است، بنابراین در فشار اتمسفر و دمای محیط بخار می شوند. در محیط بسته بخارهای ایجاد شده بر روی سطح میعان کرده و توسط مولکول های سطح قطعات جذب شده و منجر به توقف یا تاخیر در انجام واکنش های خوردگی می شوند. روش مذکور به عنوان یکی از روش های استاندارد محافظت کف مخازن نفتی مطرح شده است.

    روش دیگر تزریق مداوم وی سی آی از طریق شبکه ای از لوله های سوراخ دار است. این لوله ها در زیر مخزن و در داخل فندانسیون بتنی کف قرار می گیرند. مواد بازدارنده خوردگی از طریق لوله های مزبور در کف مخزن تزریق می شود. بدیت ترتیب با توزیع وی سی آی در کف مخزن، از خوردگی آن جلوگیری می شود.

    برای جلوگیری از ایجاد جرقه در نتیجه تمرکز الکتریسیته ساکن، باید مقاومت سطح پوشش درونی مخزن کمتر از 108 اهم باشد.

     

    سیستم های پوشش دهنده درون مخازن ذخیره نفت:

    جهت دیواره و کف از پوشش اپوکسی فنولیک با هاردنر آمین و با خاصیت آنتی استاتیک استفاده شود. که این پوشش به دلیل ایجاد کراس لینک (Cross-linK) بالا، منجر به ایجاد پوشش سخت و مقاوم خواهد شد.

    روش دیگر استفاده از پوشش پلی اورتان با خاصیت آنتی استاتیک که برای دیواره مخازن استفاده می شود. چنانچه کف مخزن توسط کامپوزیت کلاس اپاکسی (Glass-Epoxy) یا کلاس پلی استر (Glass-Polyester)روکش شده است، لازم است ژل کت سطحی آن دارای خاصیت آنتی استاتیک باشد.

    مقاومت پوشش ها در حدود 10 اهم است و چنین مقاومتی تنها مانع از بروز جرقه توسط انباشته شدن الکتریسیته ساکن می شود و از لحاظ الکتریکی چنین موادی تقریبا در ردیف مواد نیمه رسانا قرار دارند.

    آندهای فدا شونده که در داخل مخازن به کار می روند علاوه بر جلوگیری از خوردگی، عامل تخلیه بارهای الکتریسته ساکن نیز محسوب می شود.

    به طور کلی مخازن نفتی زیادی در کشور دچار نشت شده است. این موضوع ضررهای اقتصادی جبران ناپذیری به محیط زیست وارد کرده است. با توجه به اهمیت بالای حفظ محیط زیست و نیز جلوگیری از هدر رفتن نفت خام و مایعات گازی لازم است روش های جدید مقابله با خوردگی کف مخازن نفتی مورد توجه قرار گیرد. [7]

     

    ممانعت کننده ها و خوردگی :

    خوردگی کف مخازن را می توان با به کارگیری همزمان حفاظت کاتدی و ممانعت کننده خوردگی از نوع فاز بخار و یا تنها با به کارگیری وی سی آی (VCI) تحت کنترل قرار داد.

    خوردگی کف مخازن نفتی یکی از مشکلات مهم ذخیره سازی نفت خام و مایعات گازی است. نشست مخازن بزرگ نفتی موجب آلودگی آب های زیرزمینی و وارد آمدن خسارت های جبران ناپذیر به محیط زیست می شود. در گذشته کف مخازن (قسمت بیرونی مخزن که با زمین در ارتباط است) با به کارگیری حفاظت کاتدی نتوانسته است به طور کامل مانع از نشت و جلوگیری از خوردگی کف مخازن ذخیره نفت شود.

    در این مقاله دلایل ناتوانی سیستم حفاظت کاتدی در جلوگیری از خوردگی کف مخازن نفتی و آخرین روشهای مورد استفاده برای حفاظت کف مخازن بررسی می شود.

    به کارگیری سیستم حفاظت کاتدی، بازدارنده های خوردگی از نوع فاز بخار و به کارگیری همزمان حفاظت کاتدی و بازدارنده های خوردگی فاز بخار از جمله روش های حفاظت از خوردگی کف مخازن است.
     

    مشکلات روش های حفاظت کاتدی:

    نتایج تجربی نشان می دهد سیستم حفاظت کاتدی به تنهایی قادر به حفاظت خوردگی کف مخازن نیست و در موارد متعدد دچار نشت شده است. این درحالی است که کف مخازن در پتانسیل حفاظت کاتدی قرار دارد.

    یکی از روش های توزیع مناسب پتانسیل حفاظت کاتدی در کف مخازن به کارگیری بستر آندی است. به گونه ای که موجب توزیع پتانسیل حفاظت کاتدی در کف مخازن شود که شامل، به کارگیری آندهای کم عمق در اطراف مخزن، آندهای افقی و سیمی در زیر کف مخزن است.

    در روش اول به علت تخلیه جریان حفاظت کاتدی در لایه سطحی زمین، باعث افزایش ضریب حفاظتی (Over protection) در خطوط لوله مدفون در خاک و مجاور مخازن می شود، بنابراین از این روش نمی توان در پالایشگاه ها استفاده کرد. در روش دوم آندهای سیمی به صورت مارپیچ در فونداسیون کف مخزن قرار می گیرد و این روش برای مخازن موجود قابل استفاده نیست.

    یکی دیگر از روش های توزیع پتانسیل حفاظت کاتدی در کف مخزن عایق سازی الکتریکی هر یک از مخازن از یکدیگر است. در این روش هر یک از مخازن توسط فلنچ عایقی به همراه مقاومت الکتریکی از یکدیگر جدا می شوند.

    به کارگیری پوشش در کف مخزن ها نیز یکی دیگر از روش هایی است که در توزیع حفاظت کاتدی در کف مخزن استفاده می شود. به دلیل مشکلات اجرایی اعمال پوشش بر روی ورق فولادی کف مخازن نفتی و گازی امکان پذیز نمی باشد. حرارت ناشی از جوشکاری صفحات کف مخزن، باعث از بین رفتن پوشش آنها می شود، در نتیجه پوشش مناسبی برای حفاظت از این نواحی نیست.

    بنابراین به جای پوشش دادن ورق فولادی کف مخزن، محل نصب مخزن به خوبی پوشش داده می شود و اطراف مخزن را به خوبی آب بند می کنند. پوشش مزبور چسبندگی به کف مخزن ندارد، در چنین شرایطی این پوشش در حکم سپر برای جریان حفاظت کاتدی عمل می کند و اگر به دلایلی الکترولیک به ناحیه بین پوشش و کف مخزن نفوذ کند، حفاظت کاتدی قادر به مقابله با خوردگی آن نخواهد بود.

    به دلیل آن که پوشش مزبور حالت سپر الکتریکی دارد، اندازه گیری پتانسیل کف مخزن چنین حالتی را نشان نمی دهد و  کف مخزن در محدوده پتانسیل حفاظت کاتدی قرار دارد ولی خوردگی در کف آن اتفاق می افتد.

    از طرف دیگر اگر کف مخزن مستقیما بر روی فونداسیون بتنی قرار گیرد، کلیه نواحی کف مخزن قادر به ایجاد ارتباط الکتریکی مناسب با فونداسیون بتنی نخواهد بود و بنابراین حفاظت کاتدی نمی تواند به خوبی کف مخزن را تحت حفاظت خود قرار دهد.

    نتایج تجربی موجود نشان می دهد مخازن نفتی با وجود حفاظت کاتدی کف آنها دچار خوردگی می شود و نشت مواد نفتی به آبهای زیر زمینی موجب ایجاد خسارت های زیادی به آب های زیر زمینی شده است.

    روش های جدید حفاظت خوردگی کف مخازن

    امروزه می توان خوردگی کف مخازن را با به کارگیری همزمان حفاظت کاتدی و ممانعت کننده خوردگی از نوع فاز بخار و یا تنها با به کارگیری وی سی آی (VCI) تحت کنترل قرار داد.

    مواد وی سی آی، ممانعت کننده فاز بخار، می توانند در محیط بسته سطح فلز را در برابر عوامل خورنده مثل آب، بخار، کلریدها، سولفید هیدروژن و مواد خورنده دیگر در محیط های صنعتی حفاظت کنند.

    فشار بخار مواد مذکور کم است، بنابراین در فشار اتمسفر و دمای محیط بخار می شوند. در محیط بسته بخارهای ایجاد شده بر روی سطح میعان کرده و توسط مولکول های سطح قطعات جذب شده و منجر به توقف یا تاخیر در انجام واکنش های خوردگی می شوند. روش مذکور به عنوان یکی از روش های استاندارد محافظت کف مخازن نفتی مطرح شده است.

    روش دیگر تزریق مداوم وی سی آی از طریق شبکه ای از لوله های سوراخ دار است. این لوله ها در زیر مخزن و در داخل فندانسیون بتنی کف قرار می گیرند. مواد بازدارنده خوردگی از طریق لوله های مزبور در کف مخزن تزریق می شود. بدیت ترتیب با توزیع وی سی آی در کف مخزن، از خوردگی آن جلوگیری می شود.

    برای جلوگیری از ایجاد جرقه در نتیجه تمرکز الکتریسیته ساکن، باید مقاومت سطح پوشش درونی مخزن کمتر از ۱۰۸ اهم باشد.

     

    [1] Human Physiology, Silverthorn (Pearson Benjamin Cummings 2004)

    [2] Rossi S, editor. Australian Medicines Handbook 2006. Adelaide: Australian Medicines Handbook; 2006. ISBN 0-9757919-2-3

    [3] Thomas MC. Diuretics, ACE inhibitors and NSAIDs - the triple whammy. Med J Aust 2000;172(4):184–185. PMID 10772593

    [4] FitzGerald RJ, Murray BA, Walsh DJ. Hypotensive peptides from milk proteins. J Nutr 2004;134:980S-8S. PMID 15051858

    [5] Aihara K, Kajimoto O, Hirata H, Takahashi R, Nakamura Y. Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J Am Coll Nutr. 2005 Aug;24(4):257-65 PMID 16093403

    [6] Cooper WO, Hernandez-Diaz S, Arbogast PG, Dudley JA, Dyer S, Gideon PS, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med 2006;354(23):2443-51. PMID 16760444

    [7] Luno J, Praga M, de Vinuesa SG. The reno-protective effect of the dual blockade of the renin angiotensin system (RAS). Curr Pharm Des 2005;11(10):1291-300. PMID 15853685

  • فهرست و منابع تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت

    فهرست:

    ندارد.
     

    منبع:

    منابع و ماخذ :

    منابع فارسی :

    1 – ماهنامه نفت و تکنولوژی            شماره 14 ، ص36               گردآورنده : سید محمد علی محمدی ، محقق و استاد دانشگاه تهران   1386

    2 – ماهنامه نفت و گاز                              شماره 20 ، ص22               گردآورنده  : سیده لیلا کیانی ، دانشگاه شیراز   1385

    3 – مرکز اسناد و مدارک و اطلاعات علمی ایران

    Www.Irandoc.ac.ir/persian/article

     

     

     

     

     

     

     

     

     

     

    منابع لاتین :

    ^ Human Physiology, Silverthorn (Pearson Benjamin Cummings 2004)

    ^ a b Rossi S, editor. Australian Medicines Handbook 2006. Adelaide: Australian Medicines Handbook; 2006. ISBN 0-9757919-2-3.

    ^ Okumura H, Nishimura E, Kariya S, et al. Angiotensin-converting enzyme (ACE) [No relation between angiotensin-converting enzyme (ACE) inhibitor-induced cough and ACE gene polymorphism, plasma bradykinin, substance P and ACE inhibitor concentration in Japanese patients]. Yakugaku Zasshi 2001;121(3):253-7. Japanese. PMID 11265121

    ^ Thomas MC. Diuretics, ACE inhibitors and NSAIDs - the triple whammy. Med J Aust 2000;172(4):184–185. PMID 10772593

    ^ Molinaro G, Cugno M, Perez M, et al. Angiotensin-converting enzyme inhibitor-associated angioedema is characterized by a slower degradation of des-arginine(9)-bradykinin. J Pharmacol Exp Ther 2002;303:232-7. PMID 12235256.

    ^ FitzGerald RJ, Murray BA, Walsh DJ. Hypotensive peptides from milk proteins. J Nutr 2004;134:980S-8S. PMID 15051858.

    ^ Aihara K, Kajimoto O, Hirata H, Takahashi R, Nakamura Y. Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J Am Coll Nutr. 2005 Aug;24(4):257-65 PMID 16093403. 

تحقیق در مورد تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت, مقاله در مورد تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت, تحقیق دانشجویی در مورد تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت, مقاله دانشجویی در مورد تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت, تحقیق درباره تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت, مقاله درباره تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت, تحقیقات دانش آموزی در مورد تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت, مقالات دانش آموزی در مورد تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت ، موضوع انشا در مورد تحقیق مقاله بررسی نقش و تاثیر ممانعت کننده ها در صنعت نفت
ثبت سفارش
عنوان محصول
قیمت